K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

d: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

5 tháng 7 2018

(tự vẽ hình)

a+b)

_ Xét ΔABM và ΔADM có :

+AB = AD (gt)

+ AM chung

+ BM = DM (gt)

=> ΔABM = ΔADM (c-c-c)

=> \(\widehat{AMB}\) = \(\widehat{AMD}\) ( 2 góc tương ứng )

Mà 2 góc này ở vị trí kề bù

=> ​​\(\widehat{AMB}\) = \(\widehat{AMD}\) = \(\dfrac{180}{2}\) = 90o

hay AM \(\perp\) BD (đpcm)

c) _ Vì ΔABM = ΔADM ( c/m trên )

=> \(\widehat{BAM}\) = \(\widehat{DAM}\) ( 2 góc tương ứng )

hay \(\widehat{BAK}\) = \(\widehat{DAK}\)

_ Xét ΔABK và ΔADK có :

+ AK chung

+ AB = AD (gt)

+ \(\widehat{BAK}\) = \(\widehat{DAK}\)

=> ΔABK = ΔADK ( c-g-c)

15 tháng 12 2019

hình bạn vẽ nha mik giải đã chờ nha

15 tháng 12 2019

a) xét tam giác ABM VÀ tam giác ADM có

AM chung 

AB=AD(gt)

MB=MD(gt)

=) tam giác ABM = tam giác ADM (c-c-c)

b)ta có AB=AD(gt)

=)tam giác ABC cân tại A

Lại có AM là trung tuyến

=) AM là đường cao

=) AM vuông góc BD

c) Ta có tam giác ABM = tam giác ADM (cmt)

=) góc A1 =góc A2 (2 góc tương ứng)

xét tam giác ABK và tam giác ADK có 

góc A1= GÓC A2 (CMT)

AK chung

AB=AD(cmt)

=) tam giác ABK=tam giác ADK(c-g-c)

d) ta có góc A1= góc A4 (đối đỉnh )

ta có A2+A3+A4=180 ĐỘ ( BKC LÀ góc bẹt )

MÀ A1 =A4 (cmt)

=)A1+A2+A3=180 ĐỘ

=) FKD là góc bẹt

=)F K D thẳng hàng

18 tháng 12 2019

Hình bạn tự vẽ nha!

a)

Xét tam giác ABM và tam giác ADM có:

AB = AD (gt)

BM = DM (vì M là trung điểm của BD)

AM là cạnh chung

=> Tam giác ABM = Tam giác ADM (c . c . c)

b) Xét tam giác ABD có:

AB = AD (gt)

=> Tam giác ABD cân tại A.

Có M là trung điểm của BD

=> AM là đường trung tuyến của tam giác ABD.

=> AM đồng thời là đường cao của tam giác ABD.

=> AM ⊥ BD.

c) Theo câu b) ta có tam giác ABM = tam giác ADM.

=> BAM = DAM (2 góc tương ứng)

Hay BAK = DAK.

Xét tam giác ABK và tam giác ADK có:

AB = AD (gt)

BAK = DAK (cmt)

AK là cạnh chung

=> Tam giác ABK = Tam giác ADK (c . g . c)

=> ABK = ADK (2 góc tương ứng).

d) Theo câu c) ta có tam giác ABK = tam giác ADK.

=> BK = DK (2 cạnh tương ứng).

Ta có:

ABK + KBF = 1800 (vì 2 góc kề bù)

ADK + KDC = 1800 (vì 2 góc kề bù)

Mà ABK = ADK (cmt)

=> KBF = KDC

Xét tam giác KBF và tam giác KDC có:

KB = KD (cmt)

KBF = KDC (cmt)

BF = DC (gt)

=> Tam giác KBF = Tam giác KDC (c . g . c)

=> BKF = DKC (2 góc tương ứng)

Lại có: BKD + DKC = 180 (2 góc kề bù)

Mà BKF = DKC (cmt).

=> BKD + BKF = 1800

Mà BKD + BKF = FKD.

=> FKD = 1800

=> F, K, D thẳng hàng (đpcm).

Chúc bạn học tốt!

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng

1: Xét ΔABM và ΔADM có 

AB=AD

BM=DM

AM chung

Do đó: ΔABM=ΔADM

2: Xét ΔABK và  ΔADK có 

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

Suy ra: \(\widehat{ABK}=\widehat{ADK}\)

11 tháng 1 2022

vẽ hình giúp mình vs