K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

\(x^4+x^3+x^2+x+1=\left(x^4+x^3+\frac{1}{4}x^2\right)+\left(\frac{1}{4}x^2+x+1\right)+\frac{1}{2}x^2\)

\(=\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2\ge0\) (Do từng hạng tử của đa thức đều \(\ge0\))

Nếu \(x=0\) thì

 \(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2=\left(0+\frac{1}{2}.0\right)^2+\left(\frac{1}{2}.0+1^2\right)+\frac{1}{2}.0^2=1>0\)

Do đó \(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2>0\) hay \(x^4+x^3+x^2+x+1>0\)

13 tháng 4 2017

2) \(x^4-x^2+1=0\)(1)

Đặt: t=x2, khi đó:

(1)\(\Leftrightarrow t^2-t+1=0\)

\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)

\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm

31 tháng 3 2017

Ta có \(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+2\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2\)

Đặt \(t=x^2-5x+5\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+2\)

\(\Leftrightarrow t^2-1+2\)

\(\Leftrightarrow t^2+1\)

\(t^2\ge0\)

\(\Rightarrow t^2+1>0\)

\(\Leftrightarrow\left(x^2-5x+5\right)^2+1>0\)

Vậy biểu thức trên > 0 với mọi x

31 tháng 3 2017

Ta cso

(x-1)(x-2)(x-3)(x-4)+2

<=> [ (x-1)(x-4)][(x-2)(x-3)] +2

<=> (x2-5x+4)(x2-5x+6)+2

<=> (x2-5x+5-1)(x2-5x+5+1)+2

<=> (x2-5x+5)2-1+2

<=> (x2-5x+5)2+1

Ta thấy (x2-5x+5)2>=0

=> (x2-5x+5)2+1 >1>0(cmđ)

16 tháng 4 2018

\(x^6+x^4-x^3+x^2+1>0\)

\(\Leftrightarrow x^6+\left(x^2\right)^2-2\cdot\dfrac{1}{2}x\cdot x^2+\left(\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)

\(\Leftrightarrow x^6+\left(x^2-\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)(luôn đúng)

=>đpcm

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

a) $f(x)=x^5-3x+3$ liên tục trên $R$

$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$

Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$

Nghĩa là pt đã cho luôn có nghiệm.

b) $f(x)=x^5+x-1$ liên tục trên $R$

$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$

Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$

Hay pt đã cho luôn có nghiệm.

c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$

$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$

$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$

Hay pt đã cho luôn có nghiệm.

Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)

\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)

12 tháng 5 2021

a) Giả sử `(x+1)^2 >= 4x` là đúng.

Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`

`<=>x^2+1>=2x`

`<=>x^2-2x+1>=0`

`<=> (x-1)^2>=0 forall x`.

Vậy điều giả sử là đúng.

b) `x^2+y^2+2 >=2(x+y)`

`<=> (x^2-2x+1)+(y^2-2y+1) >=0`

`<=>(x-1)^2+(y-1)^2>=0 forall x,y`

c) `(1/x+1/y)(x+y)>=4`

`<=> (x+y)/(xy) (x+y) >=4`

`<=> (x+y)^2 >= 4xy`

`<=> x^2+2xy+y^2>=4xy`

`<=> (x-y)^2>=0 forall x,y > 0`

d) `x/y+y/x>=2`

`<=> (x^2+y^2)/(xy) >=2`

`<=> x^2+y^2 >=2xy`

`<=> (x-y)^2>=0 \forall x,y>0`.

12 tháng 5 2021

a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0

=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)

b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)

=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)

=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)

c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)​​​(vì x>0,y>0)

=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)

d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)

=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)

Mình làm hơi tắt mong bạn thông cảm nhé

Chúc bạn học tốt