K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2023

Trong mp(SAB), gọi M là giao điểm của SG với AB

Trong mp(SBC), gọi N là giao điểm của SO với BC

Xét ΔSAB có

G là trọng tâm

M là giao điểm của SG với AB

Do đó: M là trung điểm của AB

=>\(SG=\dfrac{2}{3}SM\)

Xét ΔSBC có

O là trọng tâm

SO cắt BC tại N

Do đó: N là trung điểm của BC

=>\(SO=\dfrac{2}{3}SN\)

Xét ΔSMN có \(\dfrac{SG}{SM}=\dfrac{SO}{SN}=\dfrac{2}{3}\)

nên GO//MN

GO//MN

\(MN\subset\left(ABC\right)\)

GO không thuộc mp(ABC)

Do đó: GO//(ABC)

13 tháng 1 2017

Đáp án B

9 tháng 11 2023

a) Ta có SM = MN = NA và G là trọng tâm của tam giác ABC. Khi đó, ta có:
SG = 2GM (vì G là trọng tâm)
SG = 2GN (vì G là trọng tâm)
Vậy GM = GN
Do đó, ta có tam giác SMN là tam giác đều.
Vì SM = MN = NA, nên tam giác SNA cũng là tam giác đều.
Từ đó, ta có góc SNA = 60°.
Mà góc SNA = góc SNB + góc BNA = góc SNB + góc BNC.
Vậy góc SNB + góc BNC = 60°.
Nhưng góc SNB + góc BNC = góc SBC.
Vậy góc SBC = 60°.
Do đó, GM // (SBC).

b) Gọi D là điểm đối xứng của A qua G.
Ta có GD = GA (vì D là điểm đối xứng của A qua G)
Và GM = GN (vì G là trọng tâm)
Vậy tam giác GDM và tam giác GAN là tam giác đồng dạng (cạnh bằng nhau và góc bằng nhau).
Từ đó, ta có góc GDM = góc GAN.
Nhưng góc GDM = góc MCD và góc GAN = góc NGB.
Vậy góc MCD = góc NGB.
Do đó, (MCD) // (NBG).

c) Gọi H = DM ∩ (SBC).
Ta cần chứng minh H là trọng tâm của tam giác SBC.
Vì G là trọng tâm của tam giác ABC, nên AG = 2GM.
Và GD = GA (vì D là điểm đối xứng của A qua G).
Từ đó, ta có AD = 2GD.
Vậy D là trọng tâm của tam giác AGD.
Do đó, DH là đường cao của tam giác AGD.
Vậy DH cắt AG tại I sao cho AI = 2IG.
Mà AI = 2IG nên I là trọng tâm của tam giác AGD.
Vậy I nằm trên đường thẳng DM.
Từ đó, ta có H = DM ∩ (SBC) là trọng tâm của tam giác SBC.
Vậy H là trọng tâm của tam giác SBC.

a: BC vuông góc AM

BC vuông góc SA

=>BC vuông góc (SAM)

b: Kẻ AK vuông góc SM

=>AK=d(A;(SBC))

AM=4a*căn 3/2=2a*căn 3

=>SM=4a

=>AK=2a*2a*căn 3/4a=a*căn 3

a: SO vuông góc (ABC)

=>(SGO) vuông góc (ABC)

b: ((SAB);(ABC))=(SG;AG)=góc SGA

\(AG=\dfrac{a\sqrt{3}}{3}\)

cos SGA=AG/SA=căn 3/3:2=căn 3/6

=>góc SGA=73 độ

25 tháng 8 2017

Đáp án B

Gọi H là chân đường vuông góc hạ từ đỉnh S lên mặt phẳng (ABC), khi đó ta chứng minh được H là trung điểm của BC. Gọi M là trung điểm của AB khi đó từ giả thiết ta có: 

Đặt AB = x ta tính được: 

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha