Tìm tập hợp các điểm M có tọa độ như sau với mọi số thực m :
a, M (m ; -1) b, M (2 ; m)
c, M ( m ; m ) d, M (m ; -m)
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi (d): y=ax+b là tập hợp các điểm M cần tìm
Thay x=m và y=-1 vào (d), ta được;
ma+b=-1
=>ma=-1-b
=>m=(-b-1)/a
b: Thay x=2 và y=m vào (d), ta được:
2a+b=m
=>m=2a+b
c: Thay x=m và y=m vào (d), ta được:
ma+b=m
=>m(a-1)=m
=>m=m/(a-1)
=>M nằmtrên đường y=x
d: Vì M(m;-m) nên M nằm trên đường y=-x
a: M(m;-2)
=>M nằm cùng lúc trên hai đường thẳng x=m trên đường thẳng y=-2
=>M là giao điểm của hai đường thẳng x=m và y=-2
b: M(5;m)
=>M nằm đồng thời trên hai đường thẳng x=5 và đường thẳng y=m
=>M là giao điểm của hai đường thẳng x=5 và y=m
c: M(m-5;2m+3)
=>M sẽ nằm trên cùng lúc hai đường thẳng là x=m-5 và y=2m+3
=>M là giao điểm của hai đường thẳng y=2m+3 và x=m-5
Đáp án là B.
• Trường hợp m = 0
f x = − x 2 + 1 có đồ thị là parabol, có đỉnh I(0;-1).
Đồ thị hàm số đã cho có một điểm cực đại là I thuộc trục tung.
Do đó m = 0 thoả yêu cầu bài toán.
• Trường hợp m ≠ 0
f ' x = 4 m x 3 − 2 m + 1 x
f ' x = 0 ⇔ x = 0 ∨ x 2 = m + 1 2 m
+ Nếu − 1 ≤ m < 0 thì f ' ( x ) = 0 có nghiệm x = 0 ( y = m + 1 )
Đồ thị hàm số có một điểm cực đại (0;m+1) thuộc trục toạ độ.
+ Nếu m < − 1 ∨ m > 0 thì f ' ( x ) = 0 có ba nghiệm phân biệt
x = 0 y = m + 1 x = m + 1 2 m ( y = 3 m 2 + 2 m − 1 4 m ) x = − m + 1 2 m ( y = 3 m 2 + 2 m − 1 4 m )
Khi đó đồ thị hàm số có các điểm cực trị thuộc các trục toạ độ khi và chỉ khi 3 m 2 + 2 m − 1 = 0 ⇔ m = − 1 ∨ m = 1 3 . Nhận m = 1 3
1, Ta có : y = mx - 2m - 1
<=> m ( x - 2 ) - 1 - y = 0
<=> m(x - 2) - (y+1) = 0
Dấu ''='' xảy ra khi x = 2 ; y = -1
Vậy (d) luôn đi qua A(2;-1)
2, (d) : y = mx - 2m - 1
Cho x = 0 => y = -2m - 1
=> d cắt Oy tại A(0;-2m-1)
=> OA = \(\left|-2m-1\right|\)
Cho y = 0 => x = \(\dfrac{2m+1}{m}\)
=> d cắt trục Ox tại B(2m+1/m;0)
=> OB = \(\left|\dfrac{2m+1}{m}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)
\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)
<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)