K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2022

\(đặt:\sqrt[3]{x^2+5x-2}=t\)

\(x\left(x+5\right)-2\sqrt[3]{x^2+5x-2}+2=0\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)\(pt\Leftrightarrow t^3-2t+4=0\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-2\\t^2-2t+2=\left(t-1\right)^2+1>0\left(vônghiem\right)\end{matrix}\right.\)

\(t=-2=\sqrt[3]{x^2+5x-2}\Leftrightarrow-8=x^2+5x-2\Leftrightarrow x^2+5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

5 tháng 3 2022

cho a,b thuộc z.2a^2+b^2-2ab-5b+11<0.tính a^5+b^4

NV
5 tháng 3 2022

1. 

\(y=3x+1\Leftrightarrow3x-y+1=0\)

d có vtcp là (1;3) và vtpt là (3;-1)

2.

\(y=-\dfrac{1}{2}x\Rightarrow x+2y=0\)

d có vtcp là (2;-1) và vtpt là (1;2)

3.

d có vtcp là (1;0) và vtpt là (0;1)

4.

d có vtcp là (0;1) và vtpt là (1;0)

NM
4 tháng 3 2022

ta có 

\(2x^2-2x+1>\sqrt{x^2-x+1}\) Đặt \(\sqrt{x^2-x+1}=a\Rightarrow x^2-x=a^2-1\)

Vậy ta có : 

\(2\left(a^2-1\right)+1>a\Leftrightarrow2a^2-a-1>0\Leftrightarrow\left(2a+1\right)\left(a-1\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}a< -\frac{1}{2}\\a>1\end{cases}\text{ mà }a\ge0\Rightarrow a>1}\)

\(\Leftrightarrow\sqrt{x^2-x+1}>1\Leftrightarrow x^2-x>0\Leftrightarrow\orbr{\begin{cases}x>1\\x< 0\end{cases}}\)

NV
5 tháng 3 2022

Đặt \(\sqrt{x^2-x+1}=t>0\Rightarrow x\left(x-1\right)=t^2-1\)

BPT trở thành:

\(2\left(t^2-1\right)+1>t\)

\(\Leftrightarrow2t^2-t-1>0\)

\(\Leftrightarrow\left(t-1\right)\left(2t+1\right)>0\)

\(\Leftrightarrow t-1>0\) (do \(t>0\Rightarrow2t+1>0\))

\(\Rightarrow t>1\)

\(\Rightarrow\sqrt{x^2-x+1}>1\)

\(\Leftrightarrow x^2-x>0\)

\(\Rightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

3 tháng 3 2022

khoong bieet

4 tháng 3 2022

ko hiểu

2 tháng 3 2022

bằng 11035210

2 tháng 3 2022

324 565 x 34 =

11 035 210

Một công ty kinh doanh thương mại chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho $1$ phút quảng cáo trên sóng phát thanh là $800$ $000$ đồng, trên sóng truyền hình là $4$ $000$ $000$ đồng. Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là $5$ phút. Do nhu cầu quảng cáo trên truyền hình lớn nên...
Đọc tiếp

Một công ty kinh doanh thương mại chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho $1$ phút quảng cáo trên sóng phát thanh là $800$ $000$ đồng, trên sóng truyền hình là $4$ $000$ $000$ đồng. Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là $5$ phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dài tối đa là $4$ phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp $6$ lần trên sóng phát thanh. Công ty dự định chi tối đa $16$ $000$ $000$ đồng cho quảng cáo. Công ty cần đặt thời lượng quảng cáo trên sóng phát thanh và truyền hình như thế nào để hiệu quả nhất? 

1

Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x  (phút), trên truyền hình là y (phút). Chi phí cho việc này là:800.000x + 4.000.000y   (đồng)

Mức chi này không được phép vượt qúa mức chi tối đa, tức:

800.000x+ 4.000.000y ≤ 16.000.000 hay x+ 5y-20 ≤ 0

Do các điều kiện đài phát thanh, truyền hình đưa ra, ta có:x ≥ 5 và y ≤ 4

Đồng thời do x; y  là thời lượng nên x; y ≥ 0

Hiệu quả chung của quảng cáo là x+ 6y.

Bài toán trở thành: Xác định x; y  sao cho:

M( x; y) = x + 6y đạt giá trị lớn nhất.

Với các điều kiện : 

Trước tiên ta xác định miền nghiệm của hệ bất phương trình (*)

+Trong mặt phẳng tọa độ vẽ các đường thẳng

(d) : x + 5y - 20= 0 và (d’) ; x = 5; ( d’’) y = 4.

1 tháng 8

Tại sao lại là M(x;y) = x + 6y ạ

 

24 tháng 6

Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.