Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
45:(3x-6)=5
=>3x-6=45:5=9
=>3x=9+6=15
=>\(x=\dfrac{15}{3}=5\)
\(\left(x^2+1\right)\left(x-1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-1=0
=>x=1
a: \(\left|-\dfrac{1}{3}\right|-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=\dfrac{1}{3}-1+\dfrac{1}{4}:2=-\dfrac{2}{3}+\dfrac{1}{8}=\dfrac{-16}{24}+\dfrac{3}{24}=-\dfrac{13}{24}\)
b: \(\left(\dfrac{2}{3}\right)^3+\sqrt{\dfrac{49}{81}}-\left|-\dfrac{7}{3}\right|:3\)
\(=\dfrac{8}{27}+\dfrac{7}{9}-\dfrac{7}{3}\cdot\dfrac{1}{3}\)
\(=\dfrac{8}{27}+\dfrac{7}{9}-\dfrac{7}{9}=\dfrac{8}{27}\)
c: \(\sqrt{\dfrac{25}{49}}+\left(5555\right)^0+\left|-\dfrac{2}{7}\right|\)
\(=\dfrac{5}{7}+1+\dfrac{2}{7}\)
=1+1=2
`180 = 2.2. 3.3 . 5`
`2024 = 2.2.2 . 11 . 23`
`1500 = 2.2.3.5.5.5`
`400 = 2.2.2.2.5.5`
`504 = 2.2.2.3.3.7`
`890 = 2.5.89`
d: \(\left|-5-\sqrt{2}\right|=5+\sqrt{2}\)
c: \(\left|4+\sqrt{3}\right|=4+\sqrt{3}\)
d: \(\left|-\dfrac{4}{15}\right|=\dfrac{4}{15}\)
a: \(\left|3,02\right|=3,02\)
a: Các số tự nhiên chia hết cho 2 trong khoảng từ 1 đến 100 là: 2;4;6;...;100
Số số tự nhiên chia hết cho 2 trong khoảng từ 1 đến 100 là: \(\dfrac{100-2}{2}+1=50\left(số\right)\)
Các số tự nhiên chia hết cho 5 trong khoảng từ 1 đến 100 là: 5;10;...;100
Số số tự nhiên chia hết cho 5 trong khoảng từ 1 đến 100 là:
\(\dfrac{100-5}{5}+1=\dfrac{95}{5}+1=20\left(số\right)\)
b: Các số có 3 chữ số chia hết cho 3 là 102;105;...;999
Số số tự nhiên có 3 chữ số chia hết cho 3 là:
\(\dfrac{999-102}{3}+1=\dfrac{897}{3}+1=\dfrac{900}{3}=300\left(số\right)\)
a: \(\sqrt{50}>\sqrt{49}\)
mà \(\sqrt{49}=7\)
nên \(\sqrt{50}>7\)
b: \(\sqrt{27}>\sqrt{25}=5\)
=>\(\dfrac{4}{\sqrt{27}}< \dfrac{4}{5}\)
c: \(\dfrac{3}{\sqrt{7}}>1;\dfrac{\sqrt{7}}{3}< 1\)
Do đó: \(\dfrac{3}{\sqrt{7}}>\dfrac{\sqrt{7}}{3}\)
\(\left|6x+22\right|>=0\forall x;\left(y-21\right)^2>=0\forall y\)
Do đó: \(\left|6x+22\right|+\left(y-21\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}6x+22=0\\y-21=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{11}{3}\\y=21\end{matrix}\right.\)