K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC và ΔAED có

\(\dfrac{AB}{AE}=\dfrac{AC}{AD}\left(\dfrac{15}{10}=\dfrac{18}{12}=\dfrac{3}{2}\right)\)

\(\widehat{BAC}\) chung

Do đó: ΔABC~ΔAED

2: Diện tích xung quanh là:

\(S_{Xq}=\dfrac{1}{2}\cdot24\cdot12=12\cdot12=144\left(cm^2\right)\)

24 tháng 5

a) Có 5 tấm thẻ ghi số chia hết cho 5 có thể rút được là: \(3;6;9;12;15\)

Xác suất của biến cố E là:

\(P\left(E\right)=\dfrac{5}{15}=\dfrac{1}{3}\)

b) Có 6 tấm thẻ ghi số nguyên tố có thể rút được là: \(2;3;5;7;11;13\)

Xác suất của biến cố G là:

\(P\left(G\right)=\dfrac{6}{15}=\dfrac{2}{5}\)

24 tháng 5

a)Có 5 thuận lại cho biến cố E là: 3;6;9;12;15

Xác suất của biến cố E là:

\(\dfrac{5}{15}=\dfrac{1}{3}\)

b)Có 6 thuận lại cho biến cố E là: 2;3;5;7;11;13

Xác suất của biến cố G là:

\(\dfrac{6}{15}=\dfrac{2}{5}\)

25 tháng 5

Ta có: \(\left(a^2+b^2+c^2\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\) (1)

Lại có: \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4a^2b^2+4b^2c^2+4c^2a^2=2\left(2a^2b^2+2b^2c^2+2c^2a^2\right)\) (2)

Từ (1) và (2) \(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\) (đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 5

Lời giải:

$a^2+b^2<2$

$\Leftrightarrow (a-b)^2+2ab<2$

$\Leftrightarrow ab< \frac{2-(a-b)^2}{2}\leq \frac{2}{2}=1$

BĐT cần chứng minh tương đương với:

$\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\leq \frac{2}{1+ab}$

$\Leftrightarrow (a^2+b^2+2)(1+ab)\leq 2(a^2+1)(b^2+1)$

$\Leftrightarrow a^2+b^2+2+ab(a^2+b^2+2)\leq 2(a^2b^2+a^2+b^2+1)$

$\Leftrightarrow ab(a^2+b^2+2)\leq 2a^2b^2+a^2+b^2$

$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\leq 0$

$\Leftrightarrow ab(a-b)^2-(a-b)^2\leq 0$

$\Leftrightarrow (a-b)^2(ab-1)\leq 0$ (luôn đúng với mọi $a,b\in\mathbb{R}$ và $ab<1$)

Do đó ta có đpcm.

a: Xét ΔBHE vuông tại E và ΔCHF vuông tại F có

\(\widehat{BHE}=\widehat{CHF}\)(hai góc đối đỉnh)

Do đó; ΔBHE~ΔCHF

b: Xét ΔAEH vuông tại E và ΔADB vuông tại D có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AH}{AB}\)

=>\(AE\cdot AB=AH\cdot AD\)

c: Xét ΔAFB vuông tại F và ΔAEC vuông tại E có

\(\widehat{FAB}\) chung

Do đó: ΔAFB~ΔAEC

=>\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\)

=>\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

Xét ΔAFE và ΔABC có

\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

Do đó: ΔAFE~ΔABC

=>\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

\(\left(\dfrac{AF}{AB}\right)^2=\dfrac{1}{2}\)

=>\(\dfrac{AF}{AB}=\dfrac{\sqrt{2}}{2}=\dfrac{AE}{AC}\)

Xét ΔAEC vuông tại E có \(sinACE=\dfrac{AE}{AC}=\dfrac{\sqrt{2}}{2}\)

nên \(\widehat{ACE}=45^0\)

=>\(\widehat{ABF}=45^0\)

Xét tứ giác BEHD có \(\widehat{BEH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EBH}=45^0\)

Xét tứ giác DCFH có \(\widehat{HDC}+\widehat{HFC}=90^0+90^0=180^0\)

nên DCFH là tứ giác nội tiếp

=>\(\widehat{HDF}=\widehat{HCF}=45^0\)

\(\widehat{EDF}=\widehat{EDH}+\widehat{FDH}=45^0+45^0=90^0\)

=>ΔEDF vuông tại D

a: \(\dfrac{x-1}{4}-\dfrac{3x}{2}=1+\dfrac{2x-1}{3}\)

=>\(\dfrac{x-1-6x}{4}=\dfrac{3+2x-1}{3}\)

=>\(\dfrac{-5x-1}{4}=\dfrac{2x+2}{3}\)

=>\(4\left(2x+2\right)=3\left(-5x-1\right)\)

=>-15x-3=8x+8

=>-23x=11

=>\(x=-\dfrac{11}{23}\)

b: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)

=>\(\left(4x-1\right)\left(x+5\right)-\left(x-5\right)\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(4x-1-x+5\right)=0\)

=>(x+5)(3x+4)=0

=>\(\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)

c: \(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)

=>\(\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)

=>\(\left(x^2-x\right)^2+\left(x^2-x\right)-6=0\)

=>\(\left(x^2-x+3\right)\left(x^2-x-2\right)=0\)

mà \(x^2-x+3=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

nên \(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

a: Thay x=5 vào A, ta được:

\(A=\dfrac{5+3}{5^2}=\dfrac{8}{25}\)

b: \(B=\dfrac{x-6}{x^2-4}+\dfrac{3}{x-2}+\dfrac{x}{x+2}\)

\(=\dfrac{x-6}{\left(x-2\right)\left(x+2\right)}+\dfrac{3}{x-2}+\dfrac{x}{x+2}\)

\(=\dfrac{x-6+3\left(x+2\right)+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x-6+3x+6+x^2-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}\)

c: \(P=A\cdot B=\dfrac{x}{x-2}\cdot\dfrac{x+3}{x^2}=\dfrac{x+3}{x\left(x-2\right)}\)

\(P=\dfrac{1}{x+2}\)

=>\(\dfrac{x+3}{x\left(x-2\right)}=\dfrac{1}{x+2}\)

=>\(x\left(x-2\right)=\left(x+3\right)\left(x+2\right)\)

=>\(x^2+5x+6=x^2-2x\)

=>7x=-6

=>\(x=-\dfrac{6}{7}\left(nhận\right)\)

a: \(3x\left(x-7\right)+2xy-14y\)

\(=3x\left(x-7\right)+2y\left(x-7\right)\)

=(x-7)(3x+2y)

b: \(\left(4x-y\right)\left(a+b\right)-\left(y-4x\right)\left(b-1\right)\)

\(=\left(4x-y\right)\left(a+b\right)+\left(4x-y\right)\left(b-1\right)\)

\(=\left(4x-y\right)\left(a+b+b-1\right)\)

\(=\left(4x-y\right)\left(a+2b-1\right)\)

c: \(2x^2-x-6xy+3y\)

\(=\left(2x^2-x\right)-\left(6xy-3y\right)\)

\(=x\left(2x-1\right)-3y\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x-3y\right)\)

d: \(x^2-z^2+4xy+4y^2\)

\(=\left(x^2+4xy+4y^2\right)-z^2\)

\(=\left(x+2y\right)^2-z^2\)

\(=\left(x+2y+z\right)\left(x+2y-z\right)\)

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=x^2-2x+1-2\left(x^2+x-2\right)+x^2+4x+4+10x-15\)

\(=2x^2+12x-14-2x^2-2x+4\)

=10x-10

c: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=x^3-6x^2+12x-8-x^3+8-6x^2+96\)

\(=-12x^2+12x+96\)