Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét 2 tam giác AMC và ABN có:
AM =AB (tam giác AMB vuông cân)
góc MAC=góc BAN(vì cùng = 90độ+goác BAC)
AN =AC(ANC vuông cân)
=> 2 tam giác AMC=ABN(c.g.c)
=> 2 góc ANB =ACM ( 2 góc tương ứng)
b)gọi O là giao điểm của BN và AC
xét tam giác AON vuông ở A
=> góc ANO +góc AON =90độ
góc DOC =góc AON (đối đỉnh)
mà góc ANB=góc ACM (theo a)
=> góc DOC+góc DCO =90độ
=> góc ODC =90độ
hay BN vuông góc với CM
A= x2- 4xy +4y2 + y2 +9 = (x-2y)2 + y 2 +9 \(\ge\) 9
Giá trị nhỏ nhất của A là 9 khi x=y=0
Lời giải:
$A=x^2+5y^2-4xy+4y+9$
$=(x^2+4y^2-4xy)+y^2+4y+9$
$=(x-2y)^2+(y^2+4y+4)+5$
$=(x-2y)^2+(y+2)^2+5\geq 5$
Vậy GTNN của $A$ là $5$. Giá trị này đạt tại $x-2y=y+2=0$
$\Leftrightarrow y=-2; x=-4$
Bạn vẽ hình trên geogebra được không? vẽ xong vắt dán vào bài là các bạn sẽ vào hướng dẫn bạn tìm cách chứng minh
TRONG ! TAM GIÁC đường đi qua trung điểm một cạnh và song song với cạnh thứ 2 sẽ là đường trung bình sẽ đi qua trung điểm của cạnh thứ 3
a. MK là đường trung bình tam giác CBN, vậy NK = KC
b. IN là đường trung bình của tam giác AMK, thì AN= NK
AN + NK + KC = 3 AN
AC = 3 AN
AC:3 = AN
\(A=x^2+y^2+2xy+5x+5y-10\\ =\left(x+y\right)^2+5\left(x+y\right)-10\\ =\left(x+y\right)\left(x+y+5\right)-10\\ =2.\left(2+5\right)-10=4\\ \)
\( B=x^3+y^3-6xy\\ =\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2y+3xy^2+6xy\right)\\ =\left(x+y\right)^3-3xy\left(x+y+2\right)\\ =2^3-3xy.4=8-12xy\)
Cách 2 bạn dùng đường tb tương tự ý a nhé