K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:
a. ĐKXĐ: \(\left\{\begin{matrix} 3x\neq 0\\ x+1\neq 0\\ 2-4x\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\neq -1\\ x\neq \frac{1}{2}\end{matrix}\right.\)

b.

\(P=\left[\frac{(x+2)(x+1)+3x.2}{3x(x+1)}-3\right].\frac{x+1}{2(1-2x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x(x+1)}{3x(x+1)}.\frac{x+1}{2(1-2x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2(1-2x)}-\frac{3x-x^2+1}{3x}\)

\(=\frac{-2(2x-1)(2x+1)(x+1)}{6x(x+1)(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)

Tại $x=2023$ thì:

$P=\frac{2023-1}{3}=\frac{2022}{3}=674$

c.

Để $P$ nguyên thì $x-1\vdots 3$
$\Rightarrow x=3k+1$ với $k$ nguyên bất kỳ. 

Kết hợp với ĐKXĐ thì $x=3k+1$ với $k\in\mathbb{Z}$

8 tháng 12 2023

\(B=\dfrac{2x+y}{2x^2-xy}+\dfrac{8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\left(x\ne0;y\ne\pm2x\right)\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}-\dfrac{8y}{4x^2-y^2}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}-\dfrac{8xy}{x\left(2x-y\right)\left(2x+y\right)}+\dfrac{\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-8xy+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{8x^2-8xy+2y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{2\left(4x^2-4xy+y^2\right)}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{2\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{2\left(2x-y\right)}{x\left(2x+y\right)}\)

\(=\dfrac{4x-2y}{2x^2+xy}\)

Với \(x\ne0;y\ne\pm2x\), xét: \(x=\dfrac{1}{2};y=-\dfrac{3}{2}\left(tmdk\right)\)

Thay \(x=\dfrac{1}{2};y=-\dfrac{3}{2}\) vào \(B\), ta được:

\(B=\dfrac{4\cdot\dfrac{1}{2}-2\cdot\dfrac{-3}{2}}{2\cdot\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\cdot\dfrac{-3}{2}}=\dfrac{5}{-\dfrac{1}{4}}=-20\)

\(Toru\)

A B C E D I M N từ I kẻ IM vuông góc AC , từ B kẻ BN vuông góc AC  => IM // BN

áp dụng định lý Menelous vào tam giác BCD có 3 điểm A ,I , E thẳng hàng và cắt 3 cạnh tam giác :

\(\dfrac{EC}{EB}\cdot\dfrac{IB}{ID}\cdot\dfrac{AD}{AC}=1\)

=> 2 . \(\dfrac{IB}{ID}\) .  3/4  = 1

=> \(\dfrac{IB}{ID}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{DI}{DB}=\dfrac{3}{7}\)

Do IM // BN => \(\dfrac{DI}{DB}=\dfrac{IM}{BN}=\dfrac{3}{7}\) 

S abc = \(\dfrac{1}{2}BN\cdot AC\)     

S iad = \(\dfrac{1}{2}IM\cdot AD\)         \(\Rightarrow\dfrac{Siad}{Sabc}=\dfrac{IM}{BN}\cdot\dfrac{AD}{AC}=\dfrac{3}{7}\cdot\dfrac{3}{4}=\dfrac{9}{28}\)

mà S iad = 18  => S abc = 28*18 : 9 = 56

7 tháng 12 2023

Ta có: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=> a+b=2c; b+c=2a; c+a=2b

Thay vào A ta được: A=((a+b)/b)((c+b)/c)((a+c)/a)

=2c/b.2a/c.2b/a=2.2.2=8

6 tháng 12 2023

\(x^3+y^3-2(x^2-y^2)\\=(x+y)(x^2-xy+y^2)-2(x-y)(x+y)\\=(x+y)[x^2-xy+y^2-2(x-y)]\\=(x+y)(x^2-xy+y^2-2x+2y)\\=(x+y)(-x^2-xy+2y+y^2)\)

6 tháng 12 2023
x3+y3−2x2+2y2x cubed plus y cubed minus 2 x squared plus 2 y squared    
6 tháng 12 2023

           a,  Xét tứ giác ABCD có : BM = MC; DM = MA 

⇒ Tứ giác ABCD  là hình bình hành vì tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành. 

Vì ABCD là hình bình hành có một góc vuông nên ABCD là HCN (đpcm)

       ⇒ AB // CD; AB = CD

b, Xét tứ giác BEDC có:

            BE // CD

            BE = AB = CD

  ⇒ BEDC là hình bình hành (vì một tứ giác có một cặp cạnh đối diện song song và bằng nhau thì tứ giác đó là hình bình hành)

c, Xét tam giác ADE có: 

    AM = MD;

    AB = BE;

⇒ BM là đường trung bình của tam giác ADE 

 ⇒ BM = \(\dfrac{1}{2}\) DE

   ⇒ \(\dfrac{BM}{DE}\) = \(\dfrac{1}{2}\) (1) 

     BM // DE

Theo hệ quả của talet ta có:

      \(\dfrac{MK}{KE}\) = \(\dfrac{BM}{DE}\) (2)

Kết hợp (1) và (2) ta có:

     \(\dfrac{MK}{KE}\) = \(\dfrac{1}{2}\)

     KE = 2.MK (đpcm)

   

 

 

     

  

 

 

 

6 tháng 12 2023