K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt

13 tháng 11 2023

a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)

\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)

\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)

\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)

b: F(x)=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c: F(a)=G(a)

=>\(a\left(a-2\right)=-a+6\)

=>\(a^2-2a+a-6=0\)

=>\(a^2-a-6=0\)

=>(a-3)(a+2)=0

=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)

31 tháng 5 2019

c) thay x=1 vào đa thức f(x) ta có:  f(1)=4.1^3-1^2+2.1-5

                                                             =4-2+2-5

                                                             =- 1

    vậy 1 k phải là nghiệm của đa thức f(x)

MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT

31 tháng 5 2019

làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha

16 tháng 8 2018

a) Ta có:

\(f\left(x\right)+g\left(x\right)=\left(2x^3-x^2+5\right)+\left(x^2+2x-2x^3-1\right)\)

\(f\left(x\right)+g\left(x\right)=2x^3-x^2+5+x^2+2x-2x^3-1\)

\(f\left(x\right)+g\left(x\right)=2x-4\)

\(f\left(x\right)+g\left(x\right)=2\left(x-2\right)\)

Ta có:

\(f\left(x\right)-g\left(x\right)=\left(2x^3-x^2+5\right)-\left(x^2+2x-2x^3-1\right)\)

\(f\left(x\right)-g\left(x\right)=2x^3-x^2+5-x^2-2x+2x^3+1\)

\(f\left(x\right)-g\left(x\right)=4x^3-2x+6\)

b)

\(f\left(0\right)=2.0^3-0^2+5\)

\(f\left(0\right)=5\)

\(f\left(\dfrac{1}{2}\right)=2.\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^2+5\)

\(f\left(\dfrac{1}{2}\right)=2.\dfrac{1}{8}-\dfrac{1}{4}+5\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}-\dfrac{1}{4}+5\)

\(f\left(\dfrac{1}{2}\right)=5\)

\(f\left(-5\right)=2.\left(-5\right)^3-\left(-5\right)^2+5\)

\(f\left(-5\right)=2.\left(-125\right)-25+5\)

\(f\left(-5\right)=-250-25+5\)

\(f\left(-5\right)=-270\)

c) Ta có:

\(f\left(x\right)+g\left(x\right)=0\)

\(\Leftrightarrow2\left(x-2\right)=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Vậy nghiệm cùa f(x) + g(x) là 2

17 tháng 8 2018

thank bn nl ak

a: loading...

 

b: \(f\left(2\right)=\dfrac{1}{2}\cdot2=1\)

\(f\left(1\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)

\(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\)

\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\)

\(f\left(0\right)=\dfrac{1}{2}\cdot0=0\)

c: f(x)=2

=>\(\dfrac{1}{2}x=2\)

=>x=2*2=4

f(x)=1

=>\(\dfrac{1}{2}x=1\)

=>\(x=1:\dfrac{1}{2}=2\)

f(x)=-1

=>\(\dfrac{1}{2}x=-1\)

=>\(x=-1\cdot2=-2\)

d: \(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\ne\dfrac{1}{2}=y_A\)

=>A(-1;1/2) không thuộc đồ thị hàm số y=1/2x

\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}=y_B\)

=>\(B\left(-1;-\dfrac{1}{2}\right)\) thuộc đồ thị hàm số y=1/2x

19 tháng 9 2019

a) Đặt tính đa thức chia đa thức ta được:

\(f\left(x\right):g\left(x\right)=\left(x^2+x\right)\).

b) Thương f(x) : g(x) =0 

<=> \(x^2+x=0\)

<=> x ( x + 1 ) = 0

<=> x =0 hoặc x+1 =0

<=> x=0 hoặc x=-1.

c) 

Ta có: \(f\left(x\right):g\left(x\right)=\left(x^2+x\right)=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\).

Gía trị nhỏ nhất là  -1/4 đạt tại x = -1/2.

( Cảm ơn em đã giúp đỡ các bạn khác :)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^