K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

a/ Do H là trực tâm => BH vuông góc với AC mà DC vuông góc với AC => BH//CD

Tương tự cũng có CH//BD

=> BDCH là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một là hbh)

b/ Xét tứ giác ABDC có tổng các góc trong =360 

=> ^BAC+^BDC+^ABD+ACD=^BAC+^BDC+90+90=360 => ^BAC+^BDC=180

c/ Nối H với D cắt BC tại M', do BDCH là hình bình hành => M'B=M'C (t/c đường chéo hbh) => M trùng M' => H; M; D thẳng hàng

d/ Xét tam giác ADH có

OA=OD

MH=MD (t/c đường chéo hbh)

=> OM là đường trung bình của tg ADH => OM = 1/2 AH

24 tháng 10 2017

bạn giúp mình bài tập này với

1. phân tích đa thức thành nhân tử

a) 5x(3 - 2x) - 7 (2x - 3)

b) x^3 - 4x^2 + 4x
c) x^2 + 5x + 6

2. cho biểu thức : M= (4x + 3) ^2 - 2x (x + 6) - 5 (x - 2) (x + 2)

a. rút gọn M

b. chứng minh M luôn dương.

( bạn cg giúp mình nhá. mình cảm ơn trc )

22 tháng 10 2017

ppppppppppppppppppppppppppppppppppppppppppppppp

a: Xét tứ giác BHCD có

BH//CD

BD//CH

DO đó: BHCD là hình bình hành

b: Xét tứ giác ABDC có \(\widehat{ABD}+\widehat{ACD}=180^0\)

nên ABDC là tứ giác nội tiếp

Suy ra: \(\widehat{BAC}+\widehat{BDC}=180^0\)

c: Ta có: BHCD là hình bình hành

nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay H,M,D thẳng hàng

25 tháng 10 2021

a: Xét tứ giác BDCH có 

BD//CH

BH//CD

Do đó: BDCH là hình bình hành

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.