K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Để \(\frac{4x+3}{x^2+1}\)âm thì hoặc tử số âm hoặc mẫu số âm

Dễ thấy \(x^2+1>0\forall x\)=> mẫu số luôn dương

=> Tử số âm

=> \(4x+3< 0\)

\(\Leftrightarrow x< \frac{-3}{4}\)

Vậy để \(\frac{4x+3}{x^2+1}\)âm thì \(x< \frac{-3}{4}\)

12 tháng 7 2018

Đáp án B

Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)

\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)

\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)

\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)

\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)

\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)

Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(m\in\left\{3;2;4;1;7\right\}\)

7 tháng 10 2018

Ta có \(A=\frac{1}{\sqrt{4x^2+4x+1}}=\frac{1}{\sqrt{\left(2x+1\right)^2}}=\frac{1}{\left|2x+1\right|}\)

\(B=\frac{2x-2}{\sqrt{x^2-2x+1}}=\frac{2\left(x-1\right)}{\sqrt{\left(x-1\right)^2}}=\frac{2\left(x-1\right)}{\left|x-1\right|}\)

7 tháng 10 2018

Đọc lại đề đi bạn ơi :v

14 tháng 4 2023

Để phương trình 1 có 2 nghiệm phân biệt thì : \(\Delta>0\)

\(\Leftrightarrow\left(-4\right)^2-4\left(3-m\right)>0\\ \Leftrightarrow4+4m>0\\ \Leftrightarrow m>-1\circledast\)

Vì phương trình 1 cso hai nghiệm phân biệt

=> \(x_1=\dfrac{4-\sqrt{4+4m}}{2}\)

Theo bài ra ta có phương trình 1 cso 2 no phân biệt với \(x_1\le0\)

\(\Leftrightarrow\dfrac{4-\sqrt{4+4m}}{2}\le0\)

Mà ta có 2 > 0

\(\Rightarrow4-\sqrt{4+4m}\le0\\ \Leftrightarrow m\ge3\circledast\circledast\)

Từ * và ** thì với giá trị \(m\ge3\) thì bài toán được t/m

 

4 tháng 7 2021

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

4 tháng 7 2021

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)