K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2019

\(\Leftrightarrow\left(x^2+1\right)\left[x^2-2x\left(k-1\right)+\left(k-1\right)^2+k^2-4k+5\right]=2x\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-k+1\right)^2+\left(k-2\right)^2+1\right]=2x\)

Do \(VT>0\) \(\forall x\Rightarrow VP>0\Rightarrow x>0\)

Mặt khác \(\left\{{}\begin{matrix}x^2+1\ge2x\\\left(x-k+1\right)^2+\left(k-2\right)^2+1\ge1\end{matrix}\right.\)

\(\Rightarrow\left(x^2+1\right)\left[\left(x-k+1\right)^2+\left(k-2\right)^2+1\right]\ge2x\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x^2+1=2x\\\left(x-k+1\right)^2+\left(k-2\right)^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\k=2\end{matrix}\right.\)

Vậy \(k=2\) thì pt có nghiệm \(x=1\)

4 tháng 3 2020

a) Ta có : 

\(3x=3\left(x+2\right)\)

\(\Leftrightarrow3x=3x+2\)

\(\Leftrightarrow0=2\) ( vô lí )

Do đó pt đã cho vô nghiệm

b) Ta có  \(\left|x\right|=-x^2-2\) (1)

Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)

VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)

Do đó : \(VT\ne VP\)

Vì vậy pt đã cho vô nghiệm

29 tháng 3 2020
https://i.imgur.com/0Ega507.jpg
29 tháng 3 2020

ko lm nốt ý b bài 2 à

6 tháng 2 2017

Thay x=1 vào phương trình ta được:

2(2.1+1)+18=3(1+2)(2.1+k)

->24=9(2+k)

-> k=2/3

P/S: với dạng toán hỏi: tìm giá trị của k để biểu thức có nghiệm là x=\(x_0\)thì ta giái bằng cách thay nghiệm \(x_0\)đó vào phương trình rồi giải tìm ra k

6 tháng 2 2017

2(2x+1)+18=3(x+2)(2x+k)

Thay x=1 vào phương trình trên :

2(2+1)+18=3(1+2)(2+k)

4+2+18=(3+6)(2+k)

24=6+3k+12+6k

-3k-6k=-24+6+12

-9k=-6

k=2/3

3 tháng 6 2021

thay k=0 vào pt ta được 

\(9x^2-25-0^2-2.0x=0\)

=>\(9x^2-25=0\)

=>\(\left(3x-5\right)\left(3x+5\right)=0\)

=>\(3x+5=0=>x=\dfrac{-5}{3}\)

hoặc \(3x-5=0=>x=\dfrac{5}{3}\)