K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a) (x - 5)² - x(x - 4) = 0

x² - 10x + 25 - x² + 4x = 0

-6x + 25 = 0

6x = 25

x = 25/6

b) x² - 3x = 5(x - 3)

x² - 3x = 5x - 15

x² - 3x - 5x + 15 = 0

(x² - 3x) - (5x - 15) = 0

x(x - 3) - 5(x - 3) = 0

(x - 3)(x - 5) = 0

x - 3 = 0 hoặc x - 5 = 0

*) x - 3 = 0

x = 3

*) x - 5 = 0

x = 5

Vậy x = 3; x = 5

12 tháng 7 2016

a. \(x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)

\(x^3-25x-\left(x^3+8\right)=17\)

\(x^3-25x-x^3-8=17\)

\(-25x=25\)

\(x=-1\)

12 tháng 7 2016

c. \(6x^2-\left(6x^2-4x+15x-10\right)=7\)

\(6x^2-6x^2-11x+10=7\)

\(-11x=-3\)

\(x=\frac{3}{11}\)

12 tháng 8 2018

mk đưa về pt tích, phần tiếp theo bạn làm tiếp

a)  \(2x.\left(x-3\right)-\left(3-x\right)=0\)

<=>  \(\left(x-3\right)\left(2x+1\right)=0\)

..................

b)  \(3x\left(x+5\right)-6\left(x+5\right)=0\)

<=>  \(3\left(x+5\right)\left(x-2\right)=0\)

.....................

c)  \(x^4-x^2=0\)

<=> \(x^2\left(x^2-1\right)=0\)

<=>  \(x^2\left(x-1\right)\left(x+1\right)=0\)

..................

12 tháng 8 2018

a) 2x(x-3)-(3-x)=0

<=> (x-3)(2x-1)=0

=>\(\hept{\begin{cases}x-3=0\\2x-1=0\end{cases}< =>\hept{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)

đối với mấy bài này bạn nên chú ý đổi dấu mấy bài này cũng ko khó

b) 3x(x+5)-6(x+5)=0

<=> (x+5)(3x-6)=0

=>\(\hept{\begin{cases}x+5=0\\3x-6=0\end{cases}=>\hept{\begin{cases}x=-5\\x=2\end{cases}}}\)

c)  x4-x2

==x2(x2-1)=0

=>\(\hept{\begin{cases}x^2=0\\x^2-1=0\end{cases}=>\hept{\begin{cases}0\\x=+-1\end{cases}}}\)

mình giải xong rùi đó

hok tốt nha

30 tháng 10 2020

a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)

\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)

\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)

b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)

c) \(x\left(x-3\right)+4x-12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)

d) \(x^2-36=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

e) \(x^2+3x+1=2\)

\(\Leftrightarrow x^2+3x+1-2=0\)

\(\Leftrightarrow x^2+3x-1=0\)

\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)

Còn lại ........... Tự lm nất nha 

27 tháng 8 2020

\(x^3+x^2+x=3\)

\(\Leftrightarrow x^3+x^2+x-3=0\)

\(\Leftrightarrow x^3+2x^2+3x-x^2-2x-3=0\)

\(\Leftrightarrow x\left(x^2+2x+3\right)-\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+2x+3=0\end{cases}}\)

+) x - 1 = 0 <=> x = 1

+) x2 + 2x + 3 = 0

Mà \(x^2+2x+3=\left(x+1\right)^2+2\ge2\)

=> Không có x tm trong th này

Vậy pt có nghiệm là x = 1

27 tháng 8 2020

x3 + x2 + x = 3

<=> x3 + x2 + x - 3 = 0

<=> x3 + 2x2 - x2 + 3x - 2x - 3 = 0

<=> ( x3 + 2x2 + 3x ) - ( x2 + 2x + 3 ) = 0

<=> x( x2 + 2x + 3 ) - 1( x2 + 2x + 3 ) = 0

<=> ( x - 1 )( x2 + 2x + 3 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x^2+2x+3=0\end{cases}}\)

+) x - 1 = 0 => x = 1

+) x2 + 2x + 3 = ( x2 + 2x + 1 ) + 2 = ( x + 1 )2 + 2 ≥ 2 > 0 ∀ x 

Vậy phương trình có nghiệm duy nhất là x = 1

12 tháng 7 2019

#)Giải :

Bài 1 :

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Leftrightarrow144x^2+216=144x^2-480x+319\)

\(\Leftrightarrow696x=319\)

\(\Leftrightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x=-1\)

12 tháng 7 2019

a) 9(4x + 3)2 = 16(3x - 5)2

=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0

=> (12x + 9)2 - (12x - 20)2 = 0

=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0

=> 29.(24x - 11) = 0

=> 2x - 11 = 0

=> 2x = 11

=>  x = 11 : 2 = 11/2

b) (x3 - x2)2 - 4x2 + 8x - 4 = 0

=> (x3 - x2)2 - (2x - 2)2 = 0

=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0

=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0

=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0

=> (x2 - 2)(x2 + 2)(x - 1)2 = 0

=> x2 - 2 = 0

hoặc : x2 + 2 = 0

hoặc : (x - 1)2 = 0

=> x2 = 2

 hoặc : x2 = -2 (vl)

hoặc : x - 1 = 0

=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

hoặc : x = 1

Vậy ...

c) x + x4 + x3 + x2 + x + 1 = 0

=> x4(x +1) + x2(x + 1) + (x + 1) = 0

=> (x4 + x2 + 1)(x + 1) = 0

=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)\(\forall\)x; x2 \(\ge\)\(\forall\)x => x4 + x2 \(\ge\)\(\forall\)x)

=> x = -1

26 tháng 8 2019

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

26 tháng 8 2019

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8 

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)

6 tháng 10 2020

a) 4x3 - 9x = 0

<=> x( 4x2 - 9 ) = 0

<=> x( 2x - 3 )( 2x + 3 ) = 0

<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0

<=> x = 0 hoặc x = ±3/2

b) 3x( x - 2 ) - 5x + 10 = 0

<=> 3x( x - 2 ) - 5( x - 2 ) = 0

<=> ( x - 2 )( 3x - 5 ) = 0

<=> x - 2 = 0 hoặc 3x - 5 = 0

<=> x = 2 hoặc x = 5/3

c) 4x( x + 3 ) - x2 + 9 = 0

<=> 4x( x + 3 ) - ( x2 - 9 ) = 0

<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0

<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0

<=> ( x + 3 )( 4x - x + 3 ) = 0

<=> ( x + 3 )( 3x + 3 ) = 0

<=> x + 3 = 0 hoặc 3x + 3 = 0

<=> x = -3 hoặc x= -1

d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )

<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0

<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0

<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0

<=> ( x - 4 ).3x = 0

<=> x - 4 = 0 hoặc 3x = 0

<=> x = 4 hoặc x = 0

e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )

<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0

<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0

<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0

<=> ( 4x - 5 )( 2x + 4 ) = 0

<=> 4x - 5 = 0 hoặc 2x + 4 = 0

<=> x = 5/4 hoặc x = -2

f) ( x + 1/5 )2 = 64/9

<=> ( x + 1/5 )2 = ( ±8/3 )2

<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3

<=> x = 37/15 hoặc x = -43/15

g) 9( x + 2 )2 = ( x + 3 )2

<=> 32( x + 2 )2 - ( x + 3 )2 = 0

<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0

<=> ( 3x + 6 )2 - ( x + 3 )2 = 0

<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0

<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0

<=> ( 2x + 3 )( 4x + 9 ) = 0

<=> 2x + 3 = 0 hoặc 4x + 9 = 0

<=> x = -3/2 hoặc x = -9/4