K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D E F N 1 2 M

a,Tam giác DEN và tam giác DFN có:

DN chung

góc D1=góc D2

DE=DF

=> tam giác DEN=tam giác DFN (c.g.c)

b, Ta có: tam giác DEN=tam giác DFN (cma) => NE=NF

c, Vì DE=DF => tam giác DEF cân tại D, mà DM là tia phân giác

=> DM đồng thời là đường trung tuyến

=> ME=MF

d, Vì tam giác DEF cân tại D, mà DM là đường phân giác và là đường trung tuyến

=> DM đồng thời là đường cao

=> DM vuông góc với EF

e,Vì DM là đường trung tuyến, mà đồng thời là đường vuông góc

=> DM là đường trung trực

f,Đề bài câu f có chút nhầm lẫn bn ơi, phải là tam giác EMN=tam giác FMN

Cách 1: (c.c.c)

Tam giác EMN và tam giác FMN có:

MN chung

EM=MF

NE=NF

=> tam giác EMN=tam giác FMN (c.c.c)

Cách 2: (c.g.c)

Vì DM vuông góc với EF

=> NM -----------------------

=> góc NME = góc NMF =90 độ

Tam giác EMN và tam giác FMN có:

NM chung

góc NME= góc NMF (chứng minh trên)

EM=FM

=> tam giác EMN = tam giác FMN (c.g.c)

a) Xét ∆DEM và ∆DFN ta có 

DE = DF (gt)

DM chung 

EDM = FDM ( DM là phân giác )

=> ∆ DEM = ∆DFN (c.g.c)(dpcm)

b) Vì ∆DEM = ∆DFN(cmt)

=> EM = MF ( tương ứng) 

c) Vì DE = DF (gt)

=>∆ DEF cân tại D 

Mà DM là phân giác 

=> M là trung điểm EF ( tính chất đường phân giác trong ∆ cân )

=> EM = MF(1)

d) Trong ∆ cân DEF có DM là phân giác và là trung tuyến 

=> DM vuông góc với EF(2)

e) Từ (1) và (2) 

=> DM là trung trực EF

f) Xét ∆NEM và ∆NFM ta có : 

NE = NF 

NM chung 

EM = MF 

=> ∆NEM = ∆NFM (c.c.c)

Xét ∆NEM và ∆NFM ta có : 

NE = NF 

NMF = NME (DM là trung trực) 

EM = MF 

=> ∆NEM = ∆NFM (c.g.c) 

3 tháng 5 2019

a, áp dụng định lí py-ta-go vào tam giác vuông ta có:

             \(BC^2=AB^2+AC^2\)

=>  \(AC^2=BC^2-AB^2\)

=> \(AC^2\)= 169 - 25 =144 cm

=> AC=12 cm

vậy AC=12 cm

b, xét 2 t.giác vuông ABE và DBE có:

           AB=DB(gt)

           BE cạnh chung

=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE

xét 2 t.giác vuông AEF và DEC có:

         AE=DE

        \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)

=> È=EC(2 cạnh tương ứng)

d, gọi O là giao điểm của EB và AD

xét t.giác ABO và t.giác DBO có:

          OB cạnh chung

         \(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)

         AB=BD(gt)

=> t.giác ABO=t.giác DBO(c.g.c)

=> OA=OD=> O là trung điểm của AD(1)

\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)

từ (1) và (2) => BE là trung trực của AD

           

A B C D E 5cm 13cm F O

16 tháng 4 2018

Câu 1 :

 Ta có: Có DH _l_ EF (gt)

=> H là hình chiếu của D

mà DE < DF (gt)

=> HE < HF (quan hệ đường xiên hình chiếu)

2. Vì HE < HF (từ 1)

=> ME < MF (quan hệ đx, hình chiếu)

3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:

DH: chung

H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)

nhưng HE < HF (từ 1)

=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)

5 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài quen quen, hình như là bài mình đăng