Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\left(x-2y\right)\left(x+2y\right)\)
b: \(=5x\left(y^2-2yz+z^2\right)=5x\left(y-z\right)^2\)
Lời giải:
a.
$x^8+x^4+1=(x^4)^2+2x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
b.
$x^{12}-3x^6-1=(x^6-\frac{3}{2})^2-\frac{13}{4}$
$=(x^6-\frac{3}{2}-\frac{\sqrt{13}}{2})(x^6-\frac{3}{2}+\frac{\sqrt{13}}{2})$
c.
$3x^4+10x^2-25=(3x^4+15x^2)-(5x^2+25)$
$=3x^2(x^2+5)-5(x^2+5)=(x^2+5)(3x^2-5)$
$=(x^2+5)(\sqrt{3}x-\sqrt{5})(\sqrt{3}x+\sqrt{5})$
c.
$x^2-5y^2-y^4+2xy-9$
$=(x^2+2xy+y^2)-(y^4+6y^2+9)$
$=(x+y)^2-(y^2+3)^2$
$=(x+y+y^2+3)(x+y-y^2-3)$
\(a,x^8+x^4+1\\ =\left(x^8+2x^4+1\right)-x^4\\ =\left(x^4+1\right)^2-x^4\\ =\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ b,x^{12}-3x^6-1\\ =\left(x^{12}-2x^6+1\right)-x^6-2\\ =\left(x^6-1\right)^2-x^6-2\\ =\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)-2???\\ c,3x^4+10x^2-25\\ =4x^4-\left(x^4-10x^2+25\right)\\ =4x^4-\left(x^2-5\right)^2\\ =\left(2x^2-x^2+5\right)\left(2x^2+x^2-5\right)\\ =\left(x^2+5\right)\left(3x^2-5\right)\\ d,x^2-5y^2-y^4+2xy-9\\ =\left(x^2+2xy+y^2\right)-\left(y^4+6y^2+9\right)\\ =\left(x+y\right)^2-\left(y^2+3\right)^2\\ =\left(x+y+y^2+3\right)\left(x+y-y^2-3\right)\)
a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c: \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
Lời giải:
a.
$3x^2+xy-4y^2=(3x^2-3xy)+(4xy-4y^2)=3x(x-y)+4y(x-y)=(x-y)(3x+4y)$
b.
$x^8-5x^4+4=(x^8-x^4)-(4x^4-4)$
$=x^4(x^4-1)-4(x^4-1)=(x^4-1)(x^4-4)$
$=(x^2-1)(x^2+1)(x^2-2)(x^2+2)$
$=(x-1)(x+1)(x^2+1)(x-\sqrt{2})(x+\sqrt{2})(x^2+2)$
c.
$x^3+3x^2+3x-7=(x^3+3x^2+3x+1)-8$
$=(x+1)^3-2^3=(x+1-2)[(x+1)^2+2(x+1)+4]$
$=(x-1)(x^2+4x+7)$
a) \(3x^2+xy-4y^2=3x^2-3xy+4xy-4y^2\)
\(=3x(x-y)+4y(x-y)=(3x+4y)(x-y)\)
b)\(x^8-5x^4+4=x^8-x^4-4x^4+4\)
\(=x^2(x^4-1)-4(x^4-1)=(x^2-4)(x^4-1)\)
\(=(x-2)(x+2)(x^2-1)(x^2+1)=(x-2)(x+2)(x-1)(x+1)(x^2+1)\)
c)\(x^3+3x^2+3x-7=x^3+3x^2+3x+1-8\)
\(\left(x+1\right)^3-\sqrt{2}^3=\left(x+1-\sqrt[]{2}\right)\left(\left(x+1\right)^2+2\sqrt{2}x+2\right)\)
\(a,=4\left(x-5y\right)\\ b,=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(=6x^2y^2\left(6xy-7\right)\)
b) \(=3xy\left(x^3y+5x-6\right)\)
c) \(=\left(ax+ab\right)-\left(bx+x^2\right)=a\left(b+x\right)-x\left(b+x\right)=\left(a-x\right)\left(b+x\right)\)
d) \(=3\left(2x-1\right)-\left(2x-1\right)^2=\left(2x-1\right)\left(3-2x+1\right)=\left(2x-1\right)\left(4-2x\right)=2\left(2x-1\right)\left(2-x\right)\)
\(a,=6x^2y^2\left(6xy-7\right)\\ b,=3xy\left(x^3y+5x-6\right)\\ c,=x\left(a-x\right)-b\left(a-x\right)=\left(x-b\right)\left(a-x\right)\\ d,=3\left(2x-1\right)-\left(2x-1\right)^2=\left(2x-1\right)\left(3-2x+1\right)=2\left(2-x\right)\left(2x-1\right)\)
thiếu đăng lại.
Phân tích các đa thức sau thành nhân tử:
a,5x2 - 5xy + 7y - 7x ;
b,x2 + 2xy + x + 2y ;
c,x2 - 6x - 9y2 + 9 ;
a: =5x(x-y)-7(x-y)
=(x-y)(5x-7)
b: =x(x+2y)+(x+2y)
=(x+2y)(x+1)
c; =(x-3)^2-9y^2
=(x-3-3y)(x-3+3y)
a
\(5x^2-5xy+7y-7x\\ =5x\left(x-y\right)+7\left(y-x\right)\\ =5x\left(x-y\right)-7\left(x-y\right)\\ =\left(5x-7\right)\left(x-y\right)\)
b
\(x^2+2xy+x+2y\\ =x\left(x+2y\right)+\left(x+2y\right)\\ =\left(x+1\right)\left(x+2y\right)\)
c
\(x^2-6x-9y^2+9\\ =x^2-6x+9-\left(3y\right)^2\\ =x^2-2.x.3+3^2-\left(3y\right)^2\\ =\left(x-3\right)^2-\left(3y\right)^2\\ =\left(x-3-3y\right)\left(x-3+3y\right)\)
a) -7x2 + 5xy +12y2
=-7x2-7xy+12xy+12y2
=-7x(x+y)+12y(x+y)
=(x+y)(12y-7x)
b) x8 + 3x4 + 4
=x8+4x4+4-x4
=(x4+2)2-x4
=(x4-x2+2)(x4+x2+2)
=(x4+x2-2x2+2)(x4+x2+2)
=[x2(x+1)-2(x+1)](x4+x2+1)
=(x+1)(x2-2)(x4+x2+1)
\(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4+2\right)^2-x^4\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)