Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)
\(=>-\frac{2}{5}|x-1|+1\le1\)
Dấu "=" xảy ra \(< =>x=1\)
Vậy Max A = 1 khi x = 1
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)
\(\frac{x}{2}-\left(\frac{3}{5}x-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
\(\Rightarrow\frac{5x-6x+26+14+7x}{10}=0\Rightarrow6x+40=0\Rightarrow x=-\frac{20}{3}\)
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
\(2y=3z\)
\(=>\frac{y}{3}=\frac{z}{2}\)
\(=>\frac{x}{2}=\frac{y}{3}=\frac{z}{2}\)
\(=\frac{x+y+z}{2+3+2}\)(tính chất dãy tỉ số bằng nhau)
\(=\frac{49}{7}\)
\(=7\)
\(=>x=7.2=14,y=7.3=21,z=7.2=14\)
\(\frac{x}{49}=\frac{-2}{7}\)
\(\Rightarrow7x=\left(-2\right).49=98\)
\(\Rightarrow x=\frac{98}{7}=14\)
bn ơi x = -14