Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(OH=x\Rightarrow HD=\sqrt{R^2-x^2}\)
\(S_{ODH}=\frac{1}{2}.OH.HD=\frac{1}{2}x.\sqrt{R^2-x^2}\le\frac{1}{2}.\frac{x^2+\left(R^2-x^2\right)}{2}=\frac{R^2}{4}\)
Vậy \(maxS_{ODH}=\frac{R^2}{4}\) khi \(x=\sqrt{R^2-x^2}\Rightarrow x=\frac{R}{\sqrt{2}}\Rightarrow OH=\frac{OA}{\sqrt{2}}\)
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Câu 4:
Ta có \(C_{OHD}=OD+OH+DH=R+OH+DH\)
Áp dụng BĐT \(\left(OH+DH\right)^2\le2\left(OH^2+DH^2\right)=2OD^2\)
\(\Rightarrow OH+DH\le\sqrt{2}.OD=R\sqrt{2}\)
\(\Rightarrow C_{OHD}\le R+R\sqrt{2}=R\left(1+\sqrt{2}\right)\)
Dấu "=" xảy ra khi và chỉ khi
\(OH=DH\Rightarrow2OH=R\sqrt{2}\Rightarrow OH=\frac{R\sqrt{2}}{2}\)
Vậy H nằm trên vị trí sao cho \(OH=\frac{R\sqrt{2}}{2}\) thì \(C_{OHD}\) lớn nhất